
HS CoBP-Report-03-2021 
 

Logistic and Probit Regression 
Computational Algorithms 

Authored by: Kyle Kolsti, PhD 

Kaity Jones 

Alex McBride 

6 August 2021 

 

 

 
 

HSCoBP@afit.edu 
937-255-3636 x 4768 

    

The HS CoBP core mission involves leading a consortium of government, 

industry, and academic experts to assess future homeland threats to inform 

strategic plans across nine DHS T&E capability areas. 

 

mailto:HSCoBP@afit.edu


HS CoBP-Report-03-2021 
 

Table of Contents 

 

Executive Summary ....................................................................................................................................... 3 

Introduction ................................................................................................................................................... 3 

Logistic Regression Development .................................................................................................................. 3 

Data Structure ............................................................................................................................................ 3 

Model ......................................................................................................................................................... 4 

Likelihood ................................................................................................................................................... 4 

Firth Bias Correction .................................................................................................................................. 5 

Determining Parameters ............................................................................................................................... 5 

Newton Iterations ...................................................................................................................................... 5 

Matrix Formulas ......................................................................................................................................... 7 

Uncertainty ................................................................................................................................................ 8 

Example.......................................................................................................................................................... 9 

Conclusion .................................................................................................................................................... 10 

Works Cited.................................................................................................................................................. 10 

 



HS CoBP-Report-03-2021 
 

 

 
Page 3 

 
  

Executive Summary 
This report provides the computational steps to employ logistic regression and probit regression under 

the construct of a generalized linear model (GLM). Matrix equations and pseudo-code facilitate the 

development of scripts to determine the coefficients of maximum likelihood through Newton-Raphson 

iteration method. 

Keywords: logistic regression, maximum likelihood, Newton-Raphson 

Introduction 
Many systems encountered in the Department of Homeland Security (DHS) are black box systems which 

provide only binary response data to the test team during Test and Evaluation (T&E). Logistic regression 

is a widely-used method to analyze binary response data that provides the probability of observing one 

of the two response values given certain values of a continuous factor (Natoli, Burke, & Oimoen, 2020). 

A common example is a sensor where the probability of detection depends on the range to the item of 

interest. Probit regression is a related method applicable to the same scenario that may be encountered 

is some fields such as medical research. Both logistic and probit regression can be employed under the 

construct of a generalized linear model (GLM) which is available in most statistical analysis software 

packages. On occasion, a test team may need to script these methods rather than relying on 

commercially available software products. The following best practice provides step by step 

computations for practitioners to improve understanding of these important analytical methods and to 

implement them in custom code if necessary. 

Logistic Regression Development 

Data Structure 
Data in a system with a binary outcome can be expressed as a vector of 𝑛 binary outcomes 𝒀 (𝑌𝑖 = 0 or 

1). For this report we will define 𝑌𝑖 = 1 as a successful outcome such as a detection. Each outcome 𝑌𝑖 

was observed at a value of the single predictor variable, the continuous factor 𝑥. (The matrix methods 

developed here easily extend to multiple factors if needed.) The 𝑛 × 2 design matrix 𝑿 contains 1’s in 

the first column and the values of 𝑥 used in the trials in the second column. Thus the first trial was 

performed with 𝑥 set to 𝑥1 and the observed outcome was 𝑌1, and so forth. 

 

𝑿 = [

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

] ,   𝒀 = {

𝑌1
𝑌2
⋮
𝑌𝑛

} (1) 
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Model 
To model binary response data, we begin by defining 𝜋𝑖 = 𝜋(𝑥𝑖) as the prediction of the probability of 

observing 𝑌 = 1 at 𝑥 = 𝑥𝑖. We also define two model parameters 𝛽𝑖  such that 

 𝑦𝑖 = 𝑦(𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 (2) 
 

In matrix form, 𝒚 = 𝑿𝜷 where the parameter vector 𝜷 = {𝛽0, 𝛽1}
𝑇. The generalized linear model (GLM) 

relates 𝜋 to 𝑦 through a function called the link function. For binary responses, two common link 

functions are the logit link function, based on the odds, and the probit link function, which is based on 

the normal distribution (Agresti, 2002). The link function 𝑔 and inverse link function 𝑔−1 for logit and 

probit regression are shown below in Table 1. The symbol Φ is the cumulative distribution function for 

the standard normal distribution, which has a mean of zero and a standard deviation of one. 

Table 1: Link and inverse link functions 

Link type 
Link Function 
𝑦 = 𝑔(𝜋) 

Inverse Link Function 
𝜋 = 𝑔−1(𝑦) 

Logit 𝑦𝑖 = log (
𝜋𝑖

1 − 𝜋𝑖
) 𝜋𝑖 =

1

1 + 𝑒−𝑦𝑖
 

Probit 𝑦𝑖 = Φ
−1(𝜋𝑖) 𝜋𝑖 = Φ(𝑦𝑖) 

 

Likelihood 
There is no closed-form solution to determine the parameters 𝜷 in logistic or probit regression as there 

is for standard linear regression, so the model best fit must be determined using a nonlinear solver with 

the Maximum Likelihood Estimate (MLE) method. The likelihood of a pair of parameter values 𝜷 is the 

product of the probabilities of obtaining each of the observed outcomes in 𝒀. For example, for a single 

trial at some value of 𝑥, if 𝜋(𝜷) = 0.7 then the probability of obtaining 𝑌 = 1 is 0.7 and the probability 

of obtaining 𝑌 = 0 is 0.3; thus if actual observation were 𝑌 = 1, the likelihood of 𝜷 for that trial is 0.7. 

The formula for the likelihood of a pair of parameter values 𝜷 as a product of the probabilities for each 

trial is 

 
∏𝜋𝑖

𝑌𝑖(1 − 𝜋𝑖)
1−𝑌𝑖

𝑛

𝑖=1

 (3) 

 

For better computational behavior we will deal with the natural logarithm or “log likelihood.” Recall that 

since 𝑌𝑖 is either 0 or 1, one of the two terms inside the summation will vanish for each data point. 

 
𝐿(𝛽0, 𝛽1) =∑{ 𝑌𝑖 log(𝜋𝑖) + (1 − 𝑌𝑖) log(1 − 𝜋𝑖) }

𝑛

𝑖=1

 (4) 
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Now we can fit the statistical model to the data using MLE; i.e., find 𝛽0 and 𝛽1 such that the log 

likelihood 𝐿 is at its maximum value. There is a wealth of numerical methods that can be used to 

minimize – 𝐿, which provides the same solution as maximizing 𝐿. These methods, which include the 

conjugate gradient method, steepest descent method, BFGS (Broyden–Fletcher–Goldfarb–Shanno 

algorithm, and differential evolution, are available for most scripting languages. As an alternative, the 

following section will provide a root-finding method which may be computationally faster than these 

minimization procedures. 

Firth Bias Correction 
If there is any value of 𝑥 below which all the 𝑌 values are 0 and above which all the 𝑌 values are 1 (or 

vice versa), the likelihood function does not have a maximum value and the iterative procedure 

therefore fails. This behavior is what is known as complete separation (Zorn, 2005). An example of a 

data set which has complete separation is shown in Figure 1. 

 

Figure 1: Example data set exhibiting complete separation. 

The Firth correction is a commonly used and effective way to address this situation. It is performed by 

adding an additional term to the log likelihood equation. The term equals one half of the natural 

logarithm of the determinant of the expected Fisher Information Matrix, 𝑰 (Zorn, 2005), which will be 

defined in subsequent sections of this paper. 

 
𝐿(𝜷) =∑{ 𝑌𝑖log(𝜋𝑖) + (1 − 𝑌𝑖)log(1 − 𝜋𝑖)} +

1

2
log|𝑰(𝜷)|

𝑛

𝑖=1

 (5) 

Determining Parameters 

Newton Iterations 
This section will provide the step by step instructions for fitting the GLM using the Newton-Raphson 

method (Agresti, 2002). Like standing at the top of a hill, the maximum likelihood occurs where the 

slope in every direction is zero. Mathematically, the solution for 𝜷 is where the partial derivatives of the 

Complete 

Separation 
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log likelihood function with respect to the parameters 𝛽0 and 𝛽1 are all equal to zero. The vector of the 

partial derivatives is called the gradient vector. Since there are two parameters in 𝜷, the gradient vector 

is of shape 2 × 1. 

 

𝛁𝑳(𝛽0, 𝛽1) =

{
 

 
𝜕𝐿

𝜕𝛽0
𝜕𝐿

𝜕𝛽1}
 

 

 (6) 

 

If a guess for 𝜷 does not satisfy 𝛁𝑳(𝜷) = 𝟎, an update has to be made to 𝜷 to nudge it closer to the 

solution. This update requires computation of the symmetric 2 × 2 Hessian matrix, 𝑯. The Hessian 

describes the local curvature of the surface, as indicated by the second partial derivatives that comprise 

it. 

 

𝑯(𝛽0, 𝛽1) =

[
 
 
 
 
𝜕2𝐿

𝜕𝛽0
2

𝜕2𝐿

𝜕𝛽0𝜕𝛽1
𝜕2𝐿

𝜕𝛽0𝜕𝛽1

𝜕2𝐿

𝜕𝛽1
2 ]
 
 
 
 

 (7) 

 

Table 2 contains the steps for the Newton-Raphson iterations. The gradient vector and Hessian matrix 

are fully defined in the next section. After obtaining the solution, the model fit may be assessed using 

the methods detailed in (Allison, 2014). 

Table 2: Pseudo-code for Newton-Raphson iterations 

1. Set 𝑘 = 0. 
2. Start with initial guess for the vector of parameters, 𝜷𝑘. It is usually sufficient to 

make an initial guess of 𝜷0 = {0,0}
𝑇 . 

3. Calculate the gradient vector, 𝛁𝑳(𝜷𝑘) 
4. Calculate the Hessian, 𝑯(𝜷𝑘). 

5. Calculate the update vector for the parameters: ∆𝜷 = −𝑯−1𝛁𝑳. It is better 
computationally to avoid inverting the Hessian matrix and instead solve the 
linear system: 

𝑯∆𝜷 = −𝛁𝑳 
 

6. Update the parameter vector to the latest guess. 𝜷𝑘+1 = 𝜷𝑘 + ∆𝜷 
7. Check convergence. One way to declare convergence is when the largest 

change magnitude in 𝛽 (hence biggest absolute value in ∆𝜷) was smaller than a 
tolerance. Another way is to check that the 𝐿2 norm of the residual vector 𝛁𝑳 is 
below a preset tolerance; i.e., both values of the residual vector are nearly zero. 

a. If converged: STOP. 
b. If not converged: 𝑘 = 𝑘 + 1; Go to Step 3 and perform another Newton 

iteration. 
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Matrix Formulas 
This section provides the recipes for the matrices used in the Newton iteration algorithm. For reference 

the matrix sizes are 𝑿𝑛×2, 𝒀𝑛×1, 𝝅𝑛×1, 𝒀𝑛×1, 𝑯2×2, 𝛁𝑳2×1, 𝑾𝑛×𝑛, and 𝒁𝑛×𝑛 where 𝑛 is the number of 

trials that were conducted. The constituent matrices are calculated using differently for logistic and 

probit regression, as shown in Table 4. Note that the function 𝑓 is the standard normal probability 

distribution function (𝜇 = 0, 𝜎 = 1). The formula for 𝒁 may be found in (Agresti, 2002), Problem 6.32. 

Table 3: Definitions of the matrices 𝑾 and 𝒁. 

Link Function Matrix Definitions 

Logistic  
𝑾 = diag{𝜋𝑖(1 − 𝜋𝑖)} 

𝒁 = identity(𝑛 × 𝑛) 

Probit 

𝑾 = diag {
[𝑓(𝑦𝑖)]

2

𝜋𝑖(1 − 𝜋𝑖)
} 

𝒁 = diag {
𝑓(𝑦𝑖)

𝜋𝑖(1 − 𝜋𝑖)
} 

 

The Hessian matrix is calculated using Equation 8. In truth the matrix is different depending upon 

whether the Firth correction is used; however, convergence to the solution is not significantly affected 

either way, so for simplicity Equation 8 will be used in either case. 

 𝑯 = −𝑿𝑇𝑾𝑿 (8) 
 

The gradient vector is calculated using Equation 9, 

 grad = 𝛁𝑳 = 𝑿𝑇𝒁(𝒀 − 𝝅) + 𝛁𝑳𝐹𝑖𝑟𝑡ℎ  (9) 
 

If not using Firth bias correction, the Firth gradient correction vector 𝛁𝑳𝐹𝑖𝑟𝑡ℎ  vanishes. If using the Firth 

bias correction, 𝛁𝑳𝐹𝑖𝑟𝑡ℎ is calculated using Equations 10 through 12. The Fisher Information Matrix 𝑰 is 

defined in Equation 10. To take the square root of the diagonal matrix 𝑾, simply take the square root of 

each element along the diagonal. The bolded 0.5 indicates a column vector of size 𝑛 × 1 with all 

elements equal to 0.5. 

 𝑰 = −𝑯 = 𝑿𝑇𝑾𝑿 (10) 
 

 𝑯̂ = 𝑾1/2𝑿𝑰−1𝑿𝑇𝑾1/2 (11) 
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 𝛁𝑳𝐹𝑖𝑟𝑡ℎ = 𝑿
𝑇𝑯̂(𝟎. 𝟓 − 𝝅) (12) 

 

Uncertainty 
Uncertainty is captured by the 2 × 2  covariance matrix 𝚺, which is the inverse of the observed Fisher 

Information Matrix, 𝑰.  

 𝚺 = 𝑰−1 = (−𝑯)−1 (13) 
 

Because of a special property of the logit link function (it is called “canonical”), the observed Hessian is 

the same as the expected Hessian we have used up to this point (Cao, 2013). Therefore, the covariance 

matrix is easy to compute using Equation 10. Unfortunately, the probit link is not canonical and for the 

purposes of the covariance matrix, Equation 10 cannot be used. For more a more accurate probit 

covariance matrix, one technique is to employ numerical approximations of the second partial 

derivatives of the log likelihood function to approximate the Hessian. This procedure is computationally 

expensive; fortunately, it only must be done once and the matrix is only 2 × 2 so the expense is 

reasonable in this case. 

The standard deviations of the MLE estimates of 𝛽0 and 𝛽1 are the square roots of the diagonal of the 

covariance matrix. 

The confidence intervals on the predicted probability of success 𝜋 at a set of desired prediction points 

𝒙𝑝 can be calculated using the covariance matrix. Assume an 𝑚 × 2 prediction design matrix 𝑿𝑝 where 

𝑚 is the number of points at which to calculate the confidence limits (it may be a dense grid in 𝑥 for 

plotting purposes). As before, the first column of 𝑿𝑝 is all ones; the second column is the x coordinates 

of interest,  𝒙𝑝. The 𝑚 × 1 vector of standard error, 𝑺𝑬, is 

 
𝑺𝑬 = √diag(𝑿𝑝𝚺𝑿𝑝

𝑇) (14) 

 

Calculate 𝑦̂𝑗 = 𝛽̂0 + 𝛽̂1𝑥𝑝𝑗 at the 𝑚 prediction points with the best fit parameters from the Newton-

Raphson MLE solution 𝜷̂. (In matrix form the equation is 𝒚̂ = 𝑿𝑝𝜷̂). Calculate the 𝑧 value based on the 

desired confidence using the standard normal distribution – for example, 𝑧 = 1.28 for 95% confidence 

and 𝑧 = 1.96 for 95% confidence (2-sided interval). The lower and upper confidence intervals are 

computed using the link function defined in Table 1. 

 LCL𝑗 = 𝑔
−1(𝑦̂𝑗 − 𝑧𝑆𝐸𝑗) 

UCL𝑗 = 𝑔
−1(𝑦̂𝑗 + 𝑧𝑆𝐸𝑗) 

(15) 

 

The resulting confidence limits should be in the range 0 to 1 except for round-off errors which should be 

controlled using min/max statements. 
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Example 
This example is provided for code verification. The fabricated data consists of 12 observations (𝑛 = 12). 

Figure 2 shows a plot of the predicted probability 𝜋(𝑥) and its 80% confidence intervals for logistic 

regression, logistic regression with the Firth bias correction, and probit regression. 

    X values: 0.8, 0.9, 1.2, 1.7, 1.8, 1.9, 2.0, 2.1, 2.7, 2.9, 3.3, 3.3 

    Y values: 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1 

 

    link  Firth?  -loglike    params and SE            80% CI at x = 2.0 

    ----- -----   ---------  ------------------------  ----------------- 

    logit  NO     5.9328627  -3.3824460 +/- 2.2652052  [0.37812,0.79843] 

                              1.9109745 +/- 1.1540737 

    logit  YES    6.05890473 -2.433902  +/- 1.9137435  [0.37063,0.76422] 

                              1.3785659 +/- 0.9381849 

    probit NO     5.85762923 -2.099632  +/- 1.3043286  [0.3919, 0.79961] 

                              1.1912808 +/- 0.66827 

 

Figure 1: Graph of the MLE solutions (solid lines) and corresponding confidence intervals (dashed 
lines) for logistic regression with and without Firth correction and probit regression. 
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Conclusion 
Logistic and probit regression are effective tools for predicting the probability of success for a system 

when the probability changes with a continuous variable, 𝑥; for example, a probability of detection that 

depends on the range to the item of interest. This paper provided the steps for constructing the 

matrices and implementing Newton-Raphson iterations to obtain a solution based on the test data. 

Formulas were also provided for estimating the uncertainty in the solution’s parameters and in the 

probability of success at any value of 𝑥. These recipes can be applied in scripts to automate analysis of a 

large number of data sets. 
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